Networks

© Fernando Berzal

Networks

- Network Analysis
- Applications
- Network Properties
- Network Models
- Random-Graph Models
- Growing Random Models
- Strategic Network Formation
- Network Structure \& Dynamics
- Diffusion through Networks
- Search on Networks
- Social Influence Models
- Networked Markets
- Bibliography

Network Analysis

Networks permeate our lives.

Networks play a central role in determining

- the transmission of information about job opportunities,
- how diseases spread,
- which products we buy,
- our likelihood of succeeding professionally,
- ...

Network Analysis

As a field of study...

- How relationships between parts give rise to the collective behaviors of a system and how the system interacts and forms relationships with its environment (complex systems).
- Common principles, algorithms and tools that govern network behavior (network science).

Network Analysis

Origins: Graph Theory

Network Analysis

Networks as graphs "on steroids"...

- Objects: Graph vertices.

Objects can be of different kinds.
Objects can be labeled.

- Objects can have attributes
- Links between objects: Graph edges.

Links can be of different kinds.

- Links can be directed (arcs) or undirected (edges).
- Links can have attributes.

Network Analysis

A formal definition of network

[Ted G. Lewis: "Network Science," 2009]

$$
G(t)=\{N(t), L(t), f(t): J(t)\}
$$

where

$$
\begin{aligned}
& \mathrm{t}=\text { time (simulated or real) } \\
& \mathrm{N}=\text { nodes (a.k.a. vertices or "actors") } \\
& \mathrm{L}=\text { links (a.k.a. edges) } \\
& \mathrm{f}=\text { topology (connections through links) } \\
& \mathrm{J}=\text { behavior of nodes and links (algorithm) }
\end{aligned}
$$

Network Analysis

An interdisciplinary field: Complex systems

("networks of heterogeneous components that interact")

- Physics: Nonlinear dynamics \& chaos.

Dynamical systems that are highly sensitive to initial conditions (a.k.a. butterfly effect).

- Economics: Markets. Spontaneous (or emergent) order as the result of human action, but not the execution of any human design [Austrian perspective].
- Information theory: Complex adaptive systems. (focus on the ability to change and learn from experience).

Applications

- "Cheminformatics": Chemical compounds.
- "Bioinformatics": Protein networks \& bio-pathways
- Software Engineering: Program analysis...
- Network flow analysis (transport, workflows...)
- Semi-structured databases, e.g. XML
- Knowledge management: Ontologies \& semantic nets
- Computer-aided design (CAD): IC design...
- Geographic information systems (GIS) \& cartography
- Social networks, e.g. Web
- Economic networks, e.g. markets

Applications

"Life complexity pyramid"

Applications

Biological networks

GENOME

Gene-protein interactions

PROTEOME

Protein-protein interactions

METABOLISM

Biochemical reactions

Applications

Yeast protein interaction network

Applications

Ecological network: Trophic relationships in a food web.

Applications

Telecommunication network

Applications

Internet

Applications

World Wide Web

Applications

Social network: Bibliographic network (coauthors)

Applications

Social network: Bibliographic network (coauthors)

Applications

Social network: FOAF ("friend of a friend")

Applications

Social network: Organization

Applications

Social network: US Biotech Industry

Network Properties

Common network features:

- Large scale.
- Continuous evolution.
- Distribution (nodes decide their connections).
- Interactions only through existing links.

Network Properties

Some interesting structural properties:

- Connected components: How many? Of what size?.
- Network diameter: Average distance, worst case...
- Node degree distribution \& existence of "hubs" (heavily-connected nodes).
- Groupings (balance between local and large-distance. connections, as well as their roles).

Network Properties

Network Connectivity

WWW

Network Properties

Network Diameter

Network Properties

Clustering coefficient

nbr(u) Neighbors of the node u in the network.
k
Number of neighbors of u, i.e. $|n b r(u)|$.
$\max (\mathrm{u}) \quad$ Maximum number of links among the neighbors of u, e.g. $k^{*}(k-1) / 2$.

Clustering coefficient for the node u: $c(u)=(\#$ links among neighbors of $u) / \max (u)$

Clustering coefficient for the graph G:
$\mathrm{C}=$ average of $\mathrm{c}(\mathrm{u})$ for every node in G

Network Properties

Clustering coefficient

$$
\begin{aligned}
& k=4 \\
& m=6
\end{aligned}
$$

$$
c(u)=4 / 6=0.66
$$

$0<=\mathrm{c}(\mathrm{u})<=1$
Similarity of u neighbors to a clique (complete graph).

Informal interpretation:
"My friends tend to be friends among them."

Network Properties

Clustering coefficient for some real networks

Network	\mathbf{N}	\mathbf{C}	$\mathbf{C}_{\text {rand }}$	\mathbf{L}
WwW	153127	0.1078	0.00023	3.1
Internet	$3015-6209$	$0.18-0.30$	0.001	$3.7-3.76$
Actor	225226	0.79	0.00027	3.65
Coauthorship	52909	0.43	0.00018	5.9
Metabolic	282	0.32	0.026	2.9
Foodweb	134	0.22	0.06	2.43
C. elegance	282	0.28	0.05	2.65

Clustering coefficient (C):
$\mathrm{C}>\mathrm{C}_{\text {rand }}$
Path length (L):
$\mathrm{L}<\mathrm{L}_{\text {rand }}$

Network Properties

Node degree distribution

Normal distribution
Parameters: Average \& deviation

Network Properties

Node degree distribution

Poisson distribution
Single parameter: λ (mean \& deviation)

Network Properties

Node degree distribution

Pareto distribution (a.k.a. "power law")
Single parameter: α

The Pareto principle (the "80-20 rule"):
20% of the population controls 80% of the wealth.

Network Properties

Node degree distribution

Hubs
Small number of nodes with a very high degree.

- Hubs appear with power laws ($\mathbf{P}(\mathbf{x}) \sim \mathbf{x}^{-\alpha}$), but not with normal/binomial/Poisson distributions.

Network Properties

Node degree distribution

Log-log plot

Pareto distribution

$-\log (\operatorname{Pr}[\mathrm{X}=\mathrm{x}])=\log \left(1 / \mathrm{x}^{\alpha}\right)=-\alpha \log (\mathrm{x})$

- Linear, $-\alpha$ slope.

Normal distribution

- $\log (\operatorname{Pr}[X=x])=\log \left(a \exp \left(-x^{2} / b\right)\right)=\log (a)-x^{2} / b$
- Nonlinear, concave around the average.

Poisson distribution

$-\log (\operatorname{Pr}[X=x])=\log \left(\exp (-\lambda) \lambda^{x} / x!\right)$

- Nonlinear.

Network Properties

Node degree distribution

Log-log plot
a WWW
power law
b Coauthorship networks
power law with exponential cutoff

Network Models

"Natural" networks tend to have...

One (or a few) connected components.

- Independent of network size.
- A small diameter ("six degrees of separation").
- Constant, logarithmically increasing, or even decreasing with network size.
- High clustering ("communities").
- Much larger than expected from a random network (and, even so, with a small diameter!).
- A mixture of connections.
- Local vs. "long-distance" connections

Do they share some "universal" features?

Network Models

- Random networks.
- Random-biased networks.
- Small-world networks.

Scale-free networks.

- Hierarchical \& modular networks.
- Affiliation networks.

Network Models

Random Networks

Erdös-Rényi model

- Small number of connected components (typically one).
- Low clustering coefficient.
- Poisson distribution.

Network Models

Random Networks

Erdös-Renyi model

Network Models

Random Networks

Example: Romantic relationships in the Add Health data set.

Peter S. Bearman, James Moody \& Katherine Stovel:
"Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks" American Journal of Sociology, 110(1):44-91, July 2004

Network Models

Small-World Networks

Watts \& Strogatz model

- Small number of connected components (typically one).
- Small diameter.
- Poisson distribution.
- High clustering coefficient.

Network Models

Small-World Networks

Watts \& Strogatz model

Average path length, normalized by system size, plotted as a function of the average number of shortcuts.

Network Models

Scale-Free Networks

Barabási \& Albert model

- Small number of connected components (typically one).
- Small diameter.
- Pareto distribution.
- Small clustering coefficient.
- Hubs.

(a) Random network
(b) Scale-free network

Network Models

Scale-Free Networks

Barabási \& Albert model
"Natural" interpretation of the model:

- Variable number of nodes: Network grows as new nodes are added.

Preferential attachment:
The more connected a node is, the more likely it is to receive new links ("rich get richer" or Matthew effect).

Network Models

Scale-Free Networks

Barabási \& Albert model

Exponential model...
... without hubs.

Scale-free model...
... with hubs.

Network Models

Poisson

Pareto (power law)

Network Models

Scale-Free Networks

Features

- Self-organization traits: Links'are not random (a feature found in many complex systems).

Tolerance to random attacks, which easily disrupt random networks but not scale-free networks.

- Vulnerability to targeted attacks: "Hubs" are essential to maintain connectedness.

Network Models

Scale-Free Network, Accidental Node Failure

Scale-Free Network, Attack on Hubs

Network Models

Hierarchical/Modular Networks

- Hierarchical organization.
- Hubs.
- Cliques.

Network Models

Hierarchical/Modular Networks

Network Models

Affiliation Networks

Bipartite graph to model social interactions:

Network Models

Affiliation Networks

Network Models

Network Structure \& Dynamids

The countless ways in which network structures affect our lives make it critical to understand:

1. How network structures affect behavior.
2. Which network structures are likely to emerge.

Network Structure \& Dynamids

A complex system is a system composed of interconnected parts that, as a whole, exhibit one or more properties (behavior) not obvious from the properties of the individual parts (i.e. emergence).

Network Structure \& Dynamies

Research problems

- Search on networks (with partial local information)
- Diffusion problems:
epidemics, social contagion (ideas, fads, products...)
- Analysis of network properties
e.g. robustness/vulnerability

Network Structure \& Dynamies

From an algorithmic point of view...
Objects:

- Ranking (HITS, PageRank...).
- Classification \& anomaly detection.
- Clustering \& community analysis.
- Object identification (e.g. "entity resolution").

Links:

- Link prediction.
- Graphs:
- Subgraph detection.
- Graph classification.
- Graph generation models.

Bibliography

Networks: Origins \& Applications (social networks, Web...)

- Stanley Milgram: The small world problem.

Psychology Today, 2:60-67 (1967)

- Phillip W. Anderson: More is different. Science, 177:393-396 (1972)
- Mark S. Granovetter: The strength of weak ties. American Journal of Sociology, 78:1360-1380 (1973)
- Stanley Wasserman \& Katherine Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994
- John P. Scott: Social Network Analysis, 2nd edition.

Sage Publications Ltd., 2000.

- Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins \& Janet Wiener: Graph structure in the Web. Computer Networks 33:309-320 (2000)
- Steven H. Strogatz: Exploring Complex Networks. Nature, 410:268-275 (2001)
- Albert-Laszlo Barabasi: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003. ISBN 0452284392
- Duncan J. Watts: Six Degrees: The Science of a Connected Age. W. W. Norton \& Company, 2004. ISBN 0393325423
- Jure Leskovec, Jon M. Kleinberg \& Christos Faloutsos: Graphs over time: densification laws, shrinking diameters and possible explanations. KDD'2005

Bibliography

Network Models

- Paul Erdös \& Alfred Rényi: On the evolution of random graphs. Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61 (1960) reprinted in Duncan, Barabasi \& Watts (eds.): "The Structure and Dynamics of Networks"
- Ray Solomonoff \& Anatol Rapoport: Connectivity of random nets. Bulletin of Mathematical Biophysics, 13:107-117 (1951) reprinted in Duncan, Barabasi \& Watts (eds.): "The Structure and Dynamics of Networks"
- Duncan J. Watts \& Steven H. Strogatz: Collective dynamics of 'small-world' networks. Nature, 393:440-442 (1998)
- Albert-László Barabási \& Réka Albert: Emergence of scaling in random networks. Science, 286:509-512 (1999)
- Réka Albert, Hawoong Jeong \& Albert-László Barabási: Error and attack tolerance of complex networks. Nature 406:378-382 (2000)
- M.E.J. Newman, S.H. Strogatz \& D.J. Watts: Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64:026118 (2001)
- M.E.J. Newman, S.H. Strogatz \& D.J. Watts: Random graphs models of social networks. PNAS 99:2566-2572 (2002)
- Erzsébet Ravasz \& Albert-László Barabási: Hierarchical organization in complex networks. Physical Review E, 67:026112 (2003)
- Mark Newman: The structure and function of complex networks. SIAM Review 45:167-256 (2003)

Bibliography

Search on Networks

- Sergey Brin \& Lawrence Page: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, April 1998
- David Gibson, Jon M. Kleinberg \& Prabhakar Raghavan: Inferring Web Communities from Link Topology. ACM Conference on Hypertext and Hypermedia, June 1998
- Jon M. Kleinberg: Authoritative sources in a hyperlinked environment. Journal of the ACM, September 1999
- Toby Walsh: Search in a Small World. IJCAI'1999
- Jon M. Kleinberg. Navigation in a Small World. Nature, August 2000.
- Jon M. Kleinberg: The small-world phenomenon: An algorithm perspective. STOC'2000
- Scott White \& Padhraic Smyth: Algorithms for Estimating Relative Importance in Networks. KDD'2003
- Hanghang Tong \& Christos Faloutsos: Center-Piece Subgraphs: Problem Definition and Fast Solutions. KDD'2006
- Alekh Agarwal, Soumen Chakrabarti \& Sunny Aggarwal: Learning to Rank Networked Entities. KDD'2006
- Jeffrey Davitz, Jiye Yu, Sugato Basu, David Gutelius \& Alexandra Harris: iLink: Search and Routing in Social Networks. KDD'2007.

Bibliography

- Jiawei Han \& Micheline Kamber:

Data Mining: Concepts and Techniques [2 ${ }^{\text {nd }}$ edition], section 9.2. Addison-Wesley, 2006. ISBN 1-55860-901-3

- Mark Newman, Albert-Laszlo Barabasi \& Duncan J. Watts (editors): The Structure and Dynamics of Networks. Princeton University Press, 2006. ISBN 0-691-11357-2
- Ted G. Lewis: Network Science: Theory and Applications. Wiley, 2009. ISBN 0-470-33188-7

Bibliography

- David Easley \& Jon Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World.
Cambridge University Press, 2010. ISBN 0521195330 http://www.cs.cornell.edu/home/kleinber/networks-book/
- Mark Newman: Networks: An Introduction.

Oxford University Press, 2010. ISBN 0-19-920665-1

- Matthew O. Jackson: Social and Economic Networks, Princeton University Press, 2008. ISBN 0-691-13440-5

Bibliography

- Albert-Laszlo Barabási: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003. ISBN 0452284392
- Duncan J. Watts: Six Degrees: The Science of a Connected Age. W. W. Norton \& Company, 2004. ISBN 0393325423
- Albert-Laszlo Barabási: Bursts: The Hidden Pattern Behind Everything We Do. Dutton, 2010. ISBN 0525951601

