

Networks

- Network Analysis
 - Applications
 - Network Properties
- Network Models
 - Random-Graph Models
 - Growing Random Models
 - Strategic Network Formation
- Network Structure & Dynamics
 - Diffusion through Networks
 - Search on Networks
 - Social Influence Models
 - Networked Markets

Bibliography

berzal@acm.org

Network Analysis

Networks permeate our lives.

Networks play a central role in determining

- the transmission of information about job opportunities,
- how diseases spread,

- which products we buy,
- our likelihood of succeeding professionally,

Network Analysis

As a field of study...

 How relationships between parts give rise to the collective behaviors of a system and how the system interacts and forms relationships with its environment (complex systems).

 Common principles, algorithms and tools that govern network behavior (network science).

Network Analysis

Origins: Graph Theory

The Seven Bridges of Könisberg (Leonhard Euler, 1736)

Networks as graphs "on steroids"...

- **Objects**: Graph vertices.
 - Objects can be of different kinds.
 - Objects can be labeled.
 - Objects can have attributes
- Links between objects: Graph edges.
 - Links can be of different kinds.
 - Links can be directed (arcs) or undirected (edges).
 - Links can have attributes.

Network Analysis

A formal definition of network

[Ted G. Lewis: "Network Science," 2009]

G(t) = { N(t), L(t), f(t) : J(t) }

where

- t = time (simulated or real)
 - N = nodes (a.k.a. vertices or "actors")
 - L = links (a.k.a. edges)
 - f = topology (connections through links)
 - J = behavior of nodes and links (algorithm)

Network Analysis

An interdisciplinary field: Complex systems

("networks of heterogeneous components that interact")

- Physics: Nonlinear dynamics & chaos.
 Dynamical systems that are highly sensitive to initial conditions (a.k.a. butterfly effect).
- Economics: Markets.
 Spontaneous (or emergent) order as the result of human action, but not the execution of any human design [Austrian perspective].
- Information theory: Complex adaptive systems. (focus on the ability to change and learn from experience).

- "Cheminformatics": Chemical compounds.
- "Bioinformatics": Protein networks & bio-pathways
- Software Engineering: Program analysis...
- Network flow analysis (transport, workflows...)
- Semi-structured databases, e.g. XML
- Knowledge management: Ontologies & semantic nets
- Computer-aided design (CAD): IC design...
- Geographic information systems (GIS) & cartography
- Social networks, e.g. Web
- Economic networks, e.g. markets

Applications

"Life complexity pyramid"

Biological networks

GENOME

Gene-protein interactions

PROTEOME

Protein-protein interactions

METABOLISM

Biochemical reactions

Applications

Yeast protein interaction network

Ecological network: Trophic relationships in a food web.

Applications

Telecommunication network

Internet

Applications

Social network: Bibliographic network (coauthors)

Social network: Bibliographic network (coauthors)

Social network: FOAF ("friend of a friend")

Applications

Social network: Organization

Social network: US Biotech Industry

Network Properties

Common network features:

- Large scale.
- Continuous evolution.
- Distribution (nodes decide their connections).
- Interactions only through existing links.

Some interesting structural properties:

- Connected components: How many? Of what size?.
- Network diameter: Average distance, worst case...
- Node degree distribution
 & existence of "hubs" (heavily-connected nodes).
- Groupings (balance between local and large-distance connections, as well as their roles).

Network Properties

Network Connectivity

Network Diameter

Network Properties

Clustering coefficient

- nbr(u) Neighbors of the node u in the network.
- k Number of neighbors of u, i.e. |nbr(u)|.
- max(u) Maximum number of links among the neighbors of u, e.g. k*(k-1)/2.

Clustering coefficient for the node u: c(u) = (#links among neighbors of u) / max(u)

Clustering coefficient for the graph G: C = average of c(u) for every node in G

Clustering coefficient

0 <= c(u) <= 1

Similarity of u neighbors to a clique (complete graph).

Informal interpretation: "My friends tend to be friends among them."

Network Properties

Path length (L):

Clustering coefficient for some real networks

Network	N	С	C _{rand}	L
WWW	15 <mark>3</mark> 127	0.1078	0.00023	3.1
Internet	3015-6209	0.18-0.30	0.001	3.7-3.76
Actor	225226	0.79	0.00027	3.65
Coauthorship	529 <mark>0</mark> 9	0 <mark>.4</mark> 3	0.00 <mark>018</mark>	5.9
Metabolic	282	0.32	0.0 <mark>2</mark> 6	2.9
Foodweb	134	0.22	0.0 <mark>6</mark>	2.43
C. elegance	282	0.28	0.05	2.65
12	040	970	2	
istering co	efficier	n <mark>t (C</mark>):		C>(

L<L_{rand}

Node degree distribution

Normal distribution Parameters: Average & deviation

Network Properties

Node degree distribution

Poisson distribution Single parameter: λ (mean & deviation)

Node degree distribution

Pareto distribution (a.k.a. "power law") Single parameter: α

P(x) ~ x^{-α}

The Pareto principle (the "80-20 rule"): 20% of the population controls 80% of the wealth.

Network Properties

Node degree distribution

Hubs Small number of nodes with a very high degree.

 Hubs appear with power laws (P(x) ~ x^{-α}), but not with normal/binomial/Poisson distributions.

Node degree distribution

Log-log plot

Pareto distribution

- $\log(\Pr[X = x]) = \log(1/x^{\alpha}) = -\alpha \log(x)$
- Linear, $-\alpha$ slope.

Normal distribution

- $\log(\Pr[X = x]) = \log(a \exp(-x^2/b)) = \log(a) x^2/b$
- Nonlinear, concave around the average.

Poisson distribution

- $\log(\Pr[X = x]) = \log(\exp(-\lambda) \lambda^{x}/x!)$
- Nonlinear.

Network Properties

Node degree distribution

Log-log plot

a WWW power law

b Coauthorship networks power law with exponential cutoff

c Power grid exponential

d Social network Gaussian

Transmission lines

Acquaintances

"Natural" networks tend to have...

- One (or a few) connected components.
 - Independent of network size.
- A small diameter ("six degrees of separation").
 - Constant, logarithmically increasing, or even decreasing with network size.
- High clustering ("communities").
 - Much larger than expected from a random network (and, even so, with a small diameter!).
- A mixture of connections.
 - Local vs. "long-distance" connections

Do they share some "universal" features?

Network Models

- Random networks.
- Random-biased networks.
- Small-world networks.
- Scale-free networks.
- Hierarchical & modular networks.
- Affiliation networks.

Random Networks

Erdös-Rényi model

- Small number of connected components (typically one).
- Low clustering coefficient.
- Poisson distribution.

36

Network Models

Random Networks

Erdös-Renyi model

Number of links

Principal component

Random Networks

Example: Romantic relationships in the Add Health data set.

Peter S. Bearman, James Moody & Katherine Stovel: "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks" American Journal of Sociology, 110(1):44–91, July 2004

Network Models

Small-World Networks

Watts & Strogatz model

- Small number of connected components (typically one).
- Small diameter.
- Poisson distribution.
- High clustering coefficient.

Small-World Networks

Watts & Strogatz model

Average path length, normalized by system size, plotted as a function of the average number of shortcuts.

Scale-Free Networks

Barabási & Albert model

- Small number of connected components (typically one).
- Small diameter.
- Pareto distribution.
- Small clustering coefficient.
- Hubs.

(a) Random network

(b) Scale-free network

Scale-Free Networks

Barabási & Albert model

"Natural" interpretation of the model:

Variable number of nodes: Network grows as new nodes are added.

Preferential attachment:

The more connected a node is, the more likely it is to receive new links ("rich get richer" or Matthew effect).

Scale-Free Networks

Barabási & Albert model

Exponential model... ... without hubs.

Scale-free model... ... with hubs.

Network Models

Scale-Free Networks

Features

- Self-organization traits: Links are not random (a feature found in many complex systems).
- Tolerance to random attacks, which easily disrupt random networks but not scale-free networks.
- Vulnerability to targeted attacks: "Hubs" are essential to maintain connectedness.

Network Models

Hierarchical/Modular Networks

- Hierarchical organization.
- Hubs.
- Cliques.

A PARTICIPAL DESISTER

Hierarchical/Modular Networks

Network Models

Affiliation Networks

Bipartite graph to model social interactions:

Affiliation Networks

Network Models

Network Structure & Dynamics

The countless ways in which network structures affect our lives make it critical to understand:

1. How network structures affect behavior.

2. Which network structures are likely to emerge.

Network Structure & Dynamics

A complex system is a system composed of interconnected parts that, as a whole, exhibit one or more properties (behavior) not obvious from the properties of the individual parts (i.e. emergence).

Network Structure & Dynamics

Research problems

- Search on networks (with partial local information)
- Diffusion problems: epidemics, social contagion (ideas, fads, products...)
- Analysis of network properties e.g. robustness/vulnerability

Network Structure & Dynamics

From an algorithmic point of view...

- Objects:
 - Ranking (HITS, PageRank...).
 - Classification & anomaly detection.
 - Clustering & community analysis.
 - Object identification (e.g. "entity resolution").
- Links:
 - Link prediction.
- Graphs:
 - Subgraph detection.
 - Graph classification.
 - Graph generation models.

Bibliography

Networks: Origins & Applications (social networks, Web...)

- Stanley Milgram: The small world problem. Psychology Today, 2:60-67 (1967)
- Phillip W. Anderson: More is different. Science, 177:393-396 (1972)
- Mark S. Granovetter: The strength of weak ties. American Journal of Sociology, 78:1360-1380 (1973)
- Stanley Wasserman & Katherine Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994
- John P. Scott: **Social Network Analysis**, 2nd edition. Sage Publications Ltd., 2000.
- Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins & Janet Wiener: Graph structure in the Web. Computer Networks 33:309–320 (2000)
- Steven H. Strogatz: Exploring Complex Networks. Nature, 410:268-275 (2001)
- Albert-Laszlo Barabasi: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003. ISBN 0452284392
- Duncan J. Watts: Six Degrees: The Science of a Connected Age. W. W. Norton & Company, 2004. ISBN 0393325423
- Jure Leskovec, Jon M. Kleinberg & Christos Faloutsos: Graphs over time: densification laws, shrinking diameters and possible explanations. KDD'2005

Bibliography

Network Models

- Paul Erdös & Alfred Rényi: On the evolution of random graphs. Mathematical Institute of the Hungarian Academy of Sciences, 5:17-61 (1960) reprinted in Duncan, Barabasi & Watts (eds.): "The Structure and Dynamics of Networks"
- Ray Solomonoff & Anatol Rapoport: Connectivity of random nets.
 Bulletin of Mathematical Biophysics, 13:107-117 (1951)
 reprinted in Duncan, Barabasi & Watts (eds.): "The Structure and Dynamics of Networks"
- Duncan J. Watts & Steven H. Strogatz: Collective dynamics of 'small-world' networks. Nature, 393:440-442 (1998)
- Albert-László Barabási & Réka Albert: Emergence of scaling in random networks. Science, 286:509-512 (1999)
- Réka Albert, Hawoong Jeong & Albert-László Barabási: Error and attack tolerance of complex networks. Nature 406:378-382 (2000)
- M.E.J. Newman, S.H. Strogatz & D.J. Watts: Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64:026118 (2001)
- M.E.J. Newman, S.H. Strogatz & D.J. Watts: Random graphs models of social networks. PNAS 99:2566-2572 (2002)
- Erzsébet Ravasz & Albert-László Barabási: Hierarchical organization in complex networks. Physical Review E, 67:026112 (2003)
- Mark Newman: The structure and function of complex networks. SIAM Review 45:167-256 (2003)

Bibliography

Search on Networks

- Sergey Brin & Lawrence Page: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, April 1998
- David Gibson, Jon M. Kleinberg & Prabhakar Raghavan: Inferring Web Communities from Link Topology. ACM Conference on Hypertext and Hypermedia, June 1998
- Jon M. Kleinberg: Authoritative sources in a hyperlinked environment. Journal of the ACM, September 1999
- Toby Walsh: Search in a Small World. IJCAI'1999
- Jon M. Kleinberg. Navigation in a Small World. Nature, August 2000.
- Jon M. Kleinberg: The small-world phenomenon: An algorithm perspective. STOC'2000
- Scott White & Padhraic Smyth: Algorithms for Estimating Relative Importance in Networks. KDD'2003
- Hanghang Tong & Christos Faloutsos: Center-Piece Subgraphs: Problem Definition and Fast Solutions. KDD'2006
- Alekh Agarwal, Soumen Chakrabarti & Sunny Aggarwal: Learning to Rank Networked Entities. KDD'2006
- Jeffrey Davitz, Jiye Yu, Sugato Basu, David Gutelius & Alexandra Harris: iLink: Search and Routing in Social Networks. KDD'2007.

- Jiawei Han & Micheline Kamber:
 Data Mining: Concepts and Techniques [2nd edition], section 9.2. Addison-Wesley, 2006. ISBN 1-55860-901-3
- Mark Newman, Albert-Laszlo Barabasi & Duncan J. Watts (editors): The Structure and Dynamics of Networks. Princeton University Press, 2006. ISBN 0-691-11357-2
- Ted G. Lewis: Network Science: Theory and Applications. Wiley, 2009. ISBN 0-470-33188-7

Bibliography

- David Easley & Jon Kleinberg: Networks, Crowds, and Markets: Reasoning About a Highly Connected World.
 Cambridge University Press, 2010. ISBN 0521195330 http://www.cs.cornell.edu/home/kleinber/networks-book/
- Mark Newman: Networks: An Introduction.
 Oxford University Press, 2010. ISBN 0-19-920665-1
- Matthew O. Jackson: Social and Economic Networks, Princeton University Press, 2008. ISBN 0-691-13440-5

- Albert-Laszlo Barabási: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, 2003. ISBN 0452284392
- Duncan J. Watts: Six Degrees: The Science of a Connected Age. W. W. Norton & Company, 2004. ISBN 0393325423
- Albert-Laszlo Barabási: Bursts: The Hidden Pattern Behind Everything We Do. Dutton, 2010. ISBN 0525951601

Albert-László Barabási Author of LINKED

